Nitration [HNO3/H2SO4]

Nitration [HNO3/H2SO4] Nitration [HNO3/H2SO4] Definition: Aromatic groups can be nitrated by the action of nitric acid and an acid catalyst in the reaction of electrophilic aromatic substitution. Nitration [HNO3/H2SO4] Explained: When treated benzene ring with concentrated nitric…

Continue ReadingNitration [HNO3/H2SO4]

Iodination [I2/catalyst]

Iodination [I2/catalyst] Iodination [I2/catalist] Definition: Treatment of an aromatic such as benzene with iodine (I2) and copper (II) leads to the formation of the iodinated benzene by electrophilic aromatic substitution. Iodination [I2/catalyst] Explained: Since iodine is unreactive toward aromatic…

Continue ReadingIodination [I2/catalyst]

Chlorohydrin formation [Cl2/H2O]

Chlorohydrin formation [Cl2/H2O] Chlorohydrin Formation Definition: The chlorohydrin formation reaction involves adding chlorine and water to a double bond and creating a chlorohydrin (chloro=chlorine, hydrin=hydro, water/H2O). Chlorohydrin Formation Explained: When chlorination occurs in a non-nucleophilic solvent, such as CHCl3 or…

Continue ReadingChlorohydrin formation [Cl2/H2O]

Chlorination [Cl2 plus catalyst]

Chlorination [Cl2 plus catalyst] Chlorination [Cl2 plus catalyst] Definition: Treatment of an aromatic (such as benzene) with chlorine (Cl2) and a Lewis base such as AlCl3 or FeCl3 leads to the formation of the chlorinated aromatic by electrophilic aromatic substitution. Chlorination [Cl2 plus catalyst]…

Continue ReadingChlorination [Cl2 plus catalyst]